
NASA TECHNICAL NOTE N A S A  -- 

e< I 

TN - D-5063 

LOAN COPY: RmRN TO 

KIRTLAND AFB, N MEX 
AFWL (WLIL-2) 

THERMAL CONDUCTION THROUGH 
A N  EVACUATED IDEALIZED POWDER OVER 
THE TEMPERATURE RANGE OF 100" TO 500°K 

by Ronald B. MerrdZ 

George C. Marshall Space Flight Center 
HantsvdZe, Ala. 

N A T I O N A L  A E R O N A U T I C S  A N D  S P A C E  A D M I N I S T R A T I O N  W A S H I N G T O N ,  D.  C. I! M A R C H  1969 



TECH LIBRARY KAFB. NM 

THERMAL CONDUCTION THROUGH AN EVACUATED 

IDEALIZED POWDER OVER THE TEMPERATURE 

RANGE O F  100' T O  500°K 

By Ronald B. Mer r i l l  

George C.  Marsha l l  Space Flight Center  
-Huntsville, Ala. 

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 

For sale by the Clearinghouse for Federal Scientific and Technical Information 
Springfield, Virginia 22151 - CFSTI price $3.00 





TABLE OF CONTENTS 

Page 

INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 

TheProblem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 
Historical Background and Theory . . . . . . . . . . . . . . . . . . . . . .  3 
Proposed Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10 

METHOD OF MEASUREMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11 

Analysis of Several Methods . . . . . . . . . . . . . . . . . . . . . . . . . .  11 
Theory of Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13 
Relationship of Theory of Measuring to Methods . . . . . . . . . . . .  16 
Coinparison between Methods . . . . . . . . . . . . . . . . . . . . . . . . .  18 

EXPERIMENTS USING DIFFERENTIATED LINE HEATER 
SOURCEMETHOD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  20 

Experimental Arrangement . . . . . . . . . . . . . . . . . . . . . . . . . .  20 
DataReduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  23  
Sources of E r r o r s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  27 
Selection of Powder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  32  

MEASUREMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  32  

CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  41 

Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  41 

Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  51 
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  50 

APPENDIX A: RELATIVE SIZES OF TERMS IN HEAT TRANSFER 
EQUATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  53 

APPENDIX B: DATA LISTING FOR CONDUCTIVITY CALCULATIONS . . 55 

APPENDIX C: DATA LISTING O F  VOLTAGE VERSUS TIME . . . . . . . . .  63 

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  74 

iii 

. - . . _ . . 



Figure 

1. 

2. 

3. 

4. 

5. 

6 .  

7 .  

8. 

9 .  

10. 

11. 

12. 

13. 

14. 

15. 

LIST OF ILLUSTRATIONS 

Title 

Planar Geometry Considered in Theory of 
Measurement . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 

Plot  of Solution for  Differentiated Line Heater Source 
Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Heater and Thermocouple Assembly for  Samples 
2 a n d 3  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Sample Holder for  Samples 2 and 3 . . . . . . . . . . . . . . . . 
New Line Heater and Thermocouple Assembly. . . . . . . . . 
Glass Tube Saiiiple Holder. . . . . . . . . . . . . . . . . . . . . . 
Depiction of Electrical Hookup . . . . . . . . . . . . . . . . . . . 
Schematic of Differentiating Circuit. . . . . . . . . . . . . . . . 
Typical Trace of Run on Strip Chart  Recorder. . . . . . . . . 

Plot of Conductivity for  1 0  to 2 0 p  Size Powder. . . . . . . . . 
Plot of Conductivity for  38 to 53p Size Powder. . . . . . . . . 
Plot  of 125 to 2431.1 Size Powders of Sample 5 and 

Similar Size Particles Found in Literature . . . . . . . . . 

Plot of Remaining 125 to 243p Data of Samples 
3 a n d 4  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Coinposite of Figures IO, 11, and 12 with Lines 
Representing Data Points . . . . . . . . . . . . . . . . . . . . . 

Coinparison between Least Square Curves and 
10 to 2Op Powder Da ta .  . . . . . . . . . . . . . . . . . . . . . . 

Page 

13 

19 

21 

21 

22 

23 

23 

24 

24 

39 

39 

40 

40 

41 

45 

iv 



L IST  OF ILLUSTRATIONS (Concluded) 

Figure 

16. 

17. 

18. 

19. 

20 

21. 

22. 

23. 

Title Page 

Comparison between Least Square Fit of Equation (I) 
and Data for  38 to 53p Powder,  . . . . . . . . . . . . . . . . .  45 

Comparison between Least Square Fit of Equation (2 )  
and Data for  38 to 53p Powder. . . . . . . . . . . . . . . . . .  46  

Comparison of Least Square Fits of Equations (I) and 
(2 )  with Data for  38 to 53p Range Plotted on 
Cartesian Coordinate System. . . . . . . . . . . . . . . . . . .  46 

Comparison of Least Square Fit of Equation (I) with 
Data for  125 to 243p Powder . . . . . . . . . . . . . . . . . . .  47 

Comparison of Least Square Fit of Equation ( 2 )  with 
Data for  125 to 243p Powder . . . . . . . . . . . . . . . . . . .  47 

Comparison of Least  Square Fits with Data for  125 to 
243p Powder of Samples 2 and 3. . . . . . . . . . . . . . . . .  48 

Values of B in Equation K = AT3 + B. . . . . . . . . . . . . . .  48 

Values of A in Equation K = A T 3 +  B. . . . . . . . . . . . . . .  49 

V 



L I S T  OF TABLES 

Table 

I. 

II. 

III. 

Iv. 

V. 

VI. 

VII. 

VIII. 

M. 

X. 

XI. 

Title Page 

Relationship between Particle Sizes of Powder 
and Sample Numbers .  . . . . . . . . . . . . . . . . . . . . . . . 32 

Calculated Conductivities for  10 to 201.1 Powders . . . . . . . 33 

Calculated Conductivities for  38 to 531.1 Powders . . . . . . . 34 

Calculated Conductivities for Sample Numbers 
with 125 to 243p Powders .  . . . . . . . . . . . . . . , . . . . . 35 

Calculated Conductivities for Sample Number 2 
with 125 to 2431.1 Powders . . . . . . . . . . . . . . . . . . . . . 36 

Calculated Conductivities for Sample Number 3 
with 125 to  243p Powders . . . . . . . . . . . . . . . . . . . . . 37 

Glass Beads, 50p Average Particle Size. . . . . . . . . . . . . 38 

150p Average Particle Size . . . . . . . . . . . . . . . . . . . . . 38 

Values of Constant A, B, D, and E Found by Least  
43 Square Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
44 Mean Free Path.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
49 Value fo r  Exponent. , . . . . . . . . . . . . . . . . . . . . . . . . . 

vi  



THERMAL CONDUCTION THROUGH AN EVACUATED 
I DEAL1 ZED POW DER OVER THE TEMPERATURE 

RANGE OF looo TO 500°K 

INTRODUCTION 

T h e  Problem 

There are three modes of heat transfer: solid conduction, convection, 
and electromagnetic radiation. The electromagnetic mode involves emission, 
absorption, and scattering of electromagnetic waves, and it is difficult to deal 
with theoretically. One important case is the radiative thermal conduction 
through a powder. 

Radiative transfer through a powder is important f rom many standpoints. 
In theory, it provides a method of studying scattering of radiation from adjacent 
particles [ 1 , 2 , 3 ] .  In practice, its importance in astrophysics is testified to 
by its significant role in the theories of heat transport  in stars , [4,5] ,  on the 
lunar surface [6], and in the ear th 's  interior [7]. Because of the insulating 
properties of a powder, these studies are of interest  to the engineer [ 81. 
nature of the radiative thermal conductivity has  not been determined experi- 
mentally in spite of all the possible uses and actual applications of radiative 
transfer.  

The 

Several reasons exist for  paucity of experimental data. The radiative 
mode is very small  when compared to the heat transported by gas conduction 
and convection in interstitial spaces. Evidence of this w a s  given by some of 
the first studies of powders [ 9, I O ] .  Fortunately, the gas mode can be elimi- 
nated by studying the powder in a vacuum. The solid conduction mode inside 
the particles and between the particles through contacts, however, cannot be 
eliminated. The value is small  because of the constriction of the heat trans- 
ported across  the contact area in common to the particles. In fact, at some 
temperatures,  these two modes are of the same order  of magnitude. 

The major reason why few measurements are performed as a function 
of temperature can be illustrated by an example. 
a few basic definitions need to be stated. 

Before this is done, however, 
The actual conductivity is defined 



as minus the ratio of the heat flux F to the temperature gradient AT/A( in 
the l imit  where the temperature range A T  extends to zero  over a distance 
A t .  

K = l i m  - F ( g )  
AT-0 

This equation can be considered as descriptive of the microscopic heat 
flow, and it is used in deriving the heat t ransport  equation. 
conductivity K 

The effective 
is the .-slue measured with a steady state method. e 

The two conductivities are equal only when they can be considered as 
constant over the experimental temperature range. 

e 
on the range of temperatures confines it as a less useful concept than the actual 
conductivity. Usually, however, the temperature range is smal l  so that K = K 

e 
is a good approximation, but this is generally not t rue  for  measurements on 
evacuated powders. 

The dependence of K 

F o r  a powder, the value for  K e 
equation ( I )  is small. 
determined by the experimental detectivity l imits o r  by reason of extraneous 
heat fluxes along thermocouples, etc. , o r  owing to not meeting the initial 
and/or boundary conditions. are I DW/cm2 

and 10 pW/cm2"K, respectively; hence, the value fo r  the gradient is of the 
o rde r  of 100" K per centimeter. 
conditions mean that A( must be greater than o r  approximately equal to 1 
centimeter which implies AT equals about 100" K.  
K = K 

cates why measurements of the conductivity with respect to temperature for  
evacuated powders have not been performed satisfactorily. 

is small ,  implying that the ratio in 

The heat flux must be greater than a limiting value 

Reasonable values of F and K e 

Physical res t r ic t ions imposed by the boundary 

The temperature where 
lies somewhere in this 100°K temperature range. This example indi- e 

2 



Historical Background and Theory 

The total conductivity caused by all mechanisms can be found by com- 
bining each possible mode in a special way. The rule  for  combining the modes 
is analogous to solving for  the electrical conductivity from a set of conductivi- 
ties that is in series and in parallel. 
stated simply as: (I) for  the conductivities in parallel, the resulting conduc- 
tivity is equal to a simple sum of the component conductivities; and ( 2 )  fo r  
conductivities in  series, the inverse of the resulting conductivity is equal to a 
simple sum of the inverse of the components. These rules  allow each mode to 
be considered separately. 

For completeness this rule may be 

Of the three possible modes, the gaseous conduction mode at  standard 
p res su res  and temperatures is by far the predominant one. 
gaseous conduction was the prime consideration in  the study of powders by 
the ear ly  theoretician. Of course, other modes were considered but only in 
a way to show that they are negligibly small  by comparison. 

No wonder 

Lord Rayleigh (1892) was the first to derive an expression for the 
conductivity of a powder [ i l l .  
cal particles. This special model was later generalizedby Burgers [ 121 in 
1919 to include ellipsoidal particles and Russell (1935) who calculated the 
conductivity of a random distribution of cubes in a cubical a r r a y  where the 
faces of any two cubes remain parallel [ 131. 
Aberdeen and Laby [ 91 , Kannuluik e t  al ,[  l o ] ,  and recently Wechsler et ale[ 141 
have established the dependence of powder conductivity with respect to gas 
pressure.  A t  p ressures  of about torr and lower, the conductivity is 
independent of gas pressure and the radiative mode predominates. 

H i s  model consisted of a cubic a r r a y  of spheri- 

Experimental evidence by 

Every derivation in the l i terature of the radiative component of conduc- 
tion in a powder of which the author is aware supposes explicitly o r  implicitly 
two basic assumptions. 
has a uniform temperature when compared to the possible temperature differ- 
ences between particles.  
solid conductivity between points in the same particle is very much larger than 
the measured conductivities across  a contact as between two particles. 

The f i r s t  assumption is that a particle in a powder 

This assumption is a reasonable one because the 

The other assumption presumes the particles are completely opaque 
to thermal radiation. For large particles, this assumption seems reasonable 
because of the large extinction coefficient fo r  most  materials and glasses in 

3 



the thermal infrared. By reducing the size of the particles,  one could imagine 
reaching a point where the particles are not completely opaque. One way to 
distinguish whether or  not the particles are opaque is to test to see if the con- 
ductivity is a function of particle size. This statement will become obvious 
later. 

Two different approaches are considered. In the following, the particles 
The question of nonopaque particles is treated later. are considered as opaque. 

The derivation of the conductivity arising from electromagnetic radiation 
can be formalized in a very general manner when the above two assumptions 
are true. 
be expressed as 

The radiant exchange between two objects (labeled (I) and ( 2 ) )  can 

where R is the energy exchanged per  second and per unit of cross-sectional 
area perpendicular to the direction of the heat flow, IT is 
constant, and c2 are the emittance factors for  object (1) and (21,  F is 

the geometric factor, and Ti  and T, are the temperatures of objects (I) and 
(2)  , respectively. The only case considered here  is where the emittance of 
both'objects is the same. 

Stefan-Boltzmann's 

g 

The temperature difference between any two adjacent particles in a 
powder is small. The radiant energy can now be written as 

where A T  = TI - T,. 
T2 + AT, Ax is some characterist ic effective separation distance between 
the two objects, and K 

radiation. 

T lies somewhere in the interval between T2 and 

is the conductivity which is caused solely by rad 
Solving for  the value of Krad, 

K = 4 g ~ F  A x T 3  
rad €5 

4 



The problem now is expressing K 

in turn means deriving expressions for the geometric factor ( F  ) and the path 
g 

length of the radiation Ax by considering specific models. 

in te rms  of measurable quantities which rad 

Wesselinck (1960) proposed as a model the powder be considered as 
stratified into layered slabs with radiative t ransfer  occurring between slabs 
[ 151. His expression for the radiative conductivity is given by 

T3 4 ~ a d  
K r a d -  ( 2  - E) (I - P) 

- 

where d is the diameter of the particles, p is the porosity, and (I - p) is 
the percent of the volume filled by the particles. 

Laubitz ( 1959) modified Russell 's derivation slightly and obtained the 
following radiative te rm [ 161. 

E 
T3 [I - (I - p)2/3 + (I - P ) * / ~ ]  - 

K r a d -  ( I  - p )  ( 3 )  

Schotte (1960) obtained an expression by considering a combination of 
a radiative mechanism between the surfaces,  along with radiation in series, 
with the conduction through the spherical particles [ 171. 

K = 4 0 6 d T 3  
ro 

This equation can be simplified by noticing that the intrinsic solid conductivity 
K 

than the radiative te rm K so that 

(at least for  those cases that are of interest  in this paper) is much greater  
S 

rad  

K ; 4 o e d T 3 .  
( 5) rad 

5 



Notice that equations ( 2 ) ,  ( 3 ) ,  and (5) have one property in common: 

Krad they predict K to be proportional to 9. Except for  equation (5)., 
rad  

monotonically increases  with the porosity. 

Foregoing arguments have been restr ic ted to the cases where a particle 
is considered as opaque. At this time, the case'of the transparent particle is 
treated. Consider the well-known formula for  the thermal conductivity of a 
gas [ IS] :  

where C is the heat capacity of the gas per  unit volume, v is the average 
velocity of the gas particles,  and A is the mean free path. In analogy, the 
photons in a system a r e  considered as a photon gas, the restrictive being that 
boundaries are far enough away not to affect the properties of the gas. The 
heat capacity of this photon gas is the partial derivative of the energy density. 
The energy density is given by the expression 

4 u = - - o +  
C 

where c is the velocity of light. The expression for  the conductivity becomes 

16 
Krad 3 

= - - T T 3 A .  

The mean free path ( A )  may depend on the temperature. The mean 
f ree  path can be represented by the equation 

A ( T )  = Jm x f ( x ,  T) dx 
0 

where f ( x ,  T) is the distribution function of the distance traveled by a photon 
o r  

6 



where U ( h ,  T) represents the energy density of the photons with a wavelength 
between h and h + a, U( T) is the total energy density of the photons, and 
f ' (x,h) is the distribution function of the distance traveled by a photon along 
the direction of the gradient with a wavelength between h and h + dh. 
distribution function fo r  a simple case is equivalent to Lambert 's  absorption 
law so that 

The 

where a! ( A )  is the absorption coefficient. 
independent of the wavelength where U ( h ,  T) has  significant values, f (x ,  T) 
is independent of temperature, and, consequently, the mean free path would 
be also. Of course a! is not in general independent of wavelength, but various 
arguments can be made to point out that the change in A caused by a tempera- 
ture change is small  compared to 9 over the same range. 
are tenuous; one reason is that little information is available concerning the 
magnitude of the absorption coefficient o r  related constants as a function of 
wave length. 

If the absorption coefficient is 

These arguments 

The approach followed in this report  assumes that the predominant 
temperature dependence in the radiant conductivity is the temperature cubed 
dependence. 
assumption wi l l  also be tested. 

The data wi l l  be analyzed with this assumption in mind, and this 

So far gaseous and radiative conduction have been discussed. 
mode remains - that of solid conduction. 
t ransferred in series through a particle and then ac ross  the contact between 
the particles. 

One las t  
For solid conduction, heat is 

The contact resistance would logically appear to be much greater  than 
through the solid because of the restricted area of the contact. Measurements 
indicate that it is indeed several  o rders  of magnitude grea te r  [ 191. 
that the effective solid conduction is equal to essentially the contact conduction. 

This means 

A simple model of contact conduction between spherical  particles has  
been developed by Halajian et a1.[20] so that 

7 



where p is the density of the powder, g is the acceleration caused by gravity, 
v is Poisson’s ratio, E is the modulus of elasticity, K is the intrinsic 

thermal conductivity of the material ,  and z is the depth of the powder. 
dependence of K 

particles as due only to the weight of the particles above it. 
duction may now be added to the other modes of conduction. 

S 

The 
on depth z is a resul t  of considering a force between two 

The contact con- 
sol 

Al l  major modes of heat transfer in a powder have been considered. 
The expressions developed for  each mode can be added as described previously. 
The major restriction of the heat flow is between the particles of the powder. 
Heat flows in parallel between the particles by radiative t ransfer  and across  
the contacts as discussed above. 

Adding the solid te rm to the radiative te rm in equations (2)  , ( 3 )  , and 
(5) respectively, resul ts  in the following expressions of 

and 

K =  (1 - p) ( n p g ( i - u ’ ) )  E K S ( 4 ~ c ~ d )  9 .  

A few values of K have been measured by others usually with a large 
temperature differential. 
assuming K to be of the form K = AT3 + B [21 ] .  Notice that this equation is 
nearly the same, with respect  to temperature, as equations (8) 
(10) because the intrinsic thermal conductivity of an insulator is nearly con- 
stant. 

Watson attempted to overcome this problem by 

(9 ) ,  and 

The values of A and B were  found from three measurements covering 

8 



different temperature ranges for  several  types of powders including glass 
microbeads. 
powder in a vacuum chamber. 
nitrogen temperatures. Heat  was  supplied to the bottom of the platter, and 
the temperature and the heat flux at the surface were measured with a 
radiometer. 
24 hours w e r e  required before equilibrium could be approached. 

H i s  apparatus consisted chiefly of a platter containing the 
The chamber w a l l s  were cooled to liquid 

This method belongs to the class of steady state methods. About 

.Bernett et al. have developed a transient method and have made several  
conductivity and diffusivity measurements of olivine basalt and silica sand 
[22,23] .  This method consisted of a cylindrical sample surrounded by a heat 
reservoir .  Thermocouples with leads parallel to the axis w e r e  spaced on a 
diameter. After equilibrium had been established a step function w a s  applied 
on the heat reservoir  by introducing liquid nitrogen. The conductivity and 
diffusivity values w e r e  found from the curve of the temperature recorded by 
the axial thermocouple with respect to the time. One measurement takes 
slightly l e s s  than 24 hours after initiation. For  the case of powders in  a 
vacuum, temperature differentials during the test were on the order  of 100°K. 
An average temperature w a s  assigned to the measured conductivity. Plots of 
the conductivity w e r e  independent of temperature. 

A research group at Arthur D. Little C o .  has published a large number 
of papers concerning measurements of powders [ 141. 
ured powders with a probe method, a line heater source (LHS) method, and 
a guarded cold plate method. 

This group has meas- 

The cold plate method is a steady state method consisting of placing 
a sample between two plates [ 241. One plate is heated, and the other is in 
contact with a liquid at its boiling point and acts as a heat reservoir.  Heat  
is applied, and the rate of boil-off of the heat reservoir  fluid is a measure 
of the heat flux. The temperatures of the plates are known so that the con- 
ductivity is found from a simple calculation using the steady state equation. 
This method is called a guarded plate method when the plates are concentrically 
divided such that only the values of the middle plate are used in the calculation. 
Temperature gradients between the two plates w e r e  of the order  of 100°K. 
The method is restricted to heat reservoir  fluids that boil off readily and have 
a well-defined boiling point in the temperature range of interest. 
an adequate vacuum required long outgassing times. 

Obtaining 

The probe method consists of a long tube containing a heater and a 
thermometer [25] .  
pared to the material  being measured arguing that the temperature is relatively 

The tube is constructed of a good conductor when com- 

9 



.. . .. 

uniform across  the probe. An asymptotic solution fo r  the cylindrical heat 
transport equation with boundaries at infinity is proportional to the log of 

the time. The conductivity is calculated from the proportionality constant. 
One problem arises in using the asymptotic solution because equilibrium is 
difficult to establish and/or because of the source of heat  fluxes from the out- 
side boundary. 
employed by using a graphical curve fitting method [ 261. 
also means that one measurement can be taken after equilibrium has been 
established in about 1 hour's time instead of several  hours by the older method. 
Establishing equilibrium requires about 24 hours. Unfortunately, a significant 
amount of heat is lost  along the probe when the conductivity is low as in the 
case of powders 1271. This problem is not as ser ious in the line heater source 
( LHS) method. 

e 

The exact solution, near  the asymptotic region, can be 
This improvement 

The geometry of the LHS method consists essentially of two long 
parallel wires [28] .  One w i r e  is used as a heater,  and the other is a thermo- 
couple. The solution of the heat transfer equation is of the same form as the 
probe method solution although differently interpreted. In the probe method 
the temperature of the heater is monitored while the powder is monitored for  
the LHS method. The same graphical method is used to reduce the data. 

The data of Arthur D. Little are insufficient to indicate if the conduc- 
tivity is dependent upon temperature o r  to verify o r  distinguish between equa- 
tions (8)  , (9)  , and (10) [ 141. Recently some data f rom the LHS method 
became available showing that there is a temperature dependence [ 291 . 

Proposed Research 

The theoretically derived equations (8) , ( 9) , and (10) state that the 
conductivity should definitely be temperature dependent. Watson assumed 
this fact  and measured the effect of changing the porosity and particle size 
for  spherical microbeads, pumice powders , and several  other materials.  
But Bernett et al. measured the effect of changing the porosity and particle size 
temperature dependence. Obviously, one goal would be to measure the 
conductivity as a function of temperature, but this is a very difficult thing 
to do. One reason is that the temperature range should not be so large as to 
obscure the proper temperature that should be assigned to the measured 
conductivity . 

10 



The goals that were decided upon as a subject for this research were: 

( I )  to find a method suitable for  measuring the thermal conductivity 
as a function of temperature, 

(2)  to measure the conductivity as a function of temperature of an 
idealized powder that conforms to the assumptions made in developing the 
theoretical expressions, and 

(3 )  to compare these measurements with those that have already been 
made and with the theoretical expressions. 

METHOD OF MEASUREMENT 

Ana lys i s  of Several Methods 

In this analysis only a few methods a r e  considered in detail. Many 
methods are obviously not suitable for  measuring low thermal conductivities. 
Only methods which have been used in the past  o r  which are especially attract- 
ive a r e  considered. The method finally chosen is called the Differential Line 
Heat Source method and is abbreviated as DLHS. 

Steady State Methods. The c lass  of steady state methods was eliminated 
from consideration because the temperature dispersion of nonsteady state 
methods is smaller.  
pictured as a limiting condition of the transient case where the change in the 
heat flow approaches zero. More than this, however, there exist  special 
geometries that have not been duplicated by steady state methods. In these, 
the heat source and temperature sensor a re  close together. Only the rate of 
change in the temperature is needed, and not the gradient, so no e r r o r s  a r e  
introduced because of their  nearness.  

This fact is obvious when steady state methods a r e  

Probe Methods. The probe method beongs to that class in which the 
temperature is monitored at the source of the heat flux. Measurements taken 
by this method usually have been restricted to the better conductors because of 
the s ize  of the heat loss  through the length and out of the probe. 
with probes constructed of fine needles indicates that they still have axial flow 
of a significant proportion. 

Experience 



A new probe method - called a platinum w i r e  probe - has been devised 
and tested. It has the advantages associated with all probe methods of being 
very sensitive so that the conductivity of evacuated powders can be measured 
with a very small  temperature change (-3OK). The axial heat flow is mini- 
mized in the construction by a platinum w i r e  0.001 inch in diameter and about 
15 centimeters in length. 

The axial heat which does occur is subtracted by a balance bridge method. 

Each w i r e  is connected on the opposite a r m s  and equal resistances in 
Actually, two platinum w i r e s  of unequal length are placed in the material  to be 
measured. 
the other a r m s  of the bridge. 
axial heat flow of the longer wire by the shorter  one. Preliminary measure- 
ments demonstrated the utility of this method, but it is very  sensitive to how 
well  the sample reaches equilibrium. When the change is in the o rde r  of about 
3"K,  a change of about 0. 1°K will  be noted in the asymptote region. The method 
requires that a temperature difference, and a corresponding time difference, be 
taken in the asymptotic region. The initial conditions reduce to the requirement 
that the initial temperature must  be stable within about 0.OOI"K over  the 
asymptotic period of the measurement (-60 sec) . 
difficult to satisfy. Increasing the power applied increases  the total temperature 
change and somewhat relaxes the restrictions imposed by the initial conditions 
(IC) , but the power increase is accompanied by other problems. Jagged curves 
are sometimes obtained; these can be reproduced by shaking the container. The 
platinum w i r e  apparently meanders through the powder while being heated. In 
the meantime, another highly promising method was  suggested by work that had 
been done previously with a pulse method. 

The bridge has  the property of cancelling the 

This restriction is very 

Pulse Method. A pulse method has been developed using a cylindrical 
geometry. The phGical  configuration is essentially the same as the LHS 
method; however, the heater is pulsed with a short  burst  of energy. A test on 
a powder can be completed in a f e w  minutes. The conductivity can be measured, 
depending upon how much energy is released with the short  burst  of current  
through the heater wire .  The theory is simple for a shor t  burs t  but becomes 
rather  complicated when the burst  is longer than about one-tenth of the time 
that it takes the temperature to reach its maximum. Very short  bursts  mean 
that the heater w i r e  becomes very hot as does the material  around it. 

The same form of the solution may be obtained by differentiating the 
integral with respect to time, the difference being that now a steady rate of 
power is supplied to the heater instead of a pulse, and the time rate of change 
of the temperature is measured instead of the temperature. This new method 
is called the DLHS method. 
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Theory of Measurements 

The theory of all these methods was  developed by using a Green's- 
function approach. 
there a r e  no heat fluxes in the direction of the axis of the heater. 
depicts the geometry considered and defines some of the te rms  used. 
following derivation the conductivity is assumed to be constant. 
tion will be tested later to see how much e r r o r  is introduced. 

The derivation applies to a cylindrical geometry where 
Figure I 

F o r  the 
This assump- 

The heat transfer equation is 
given by 

K v2 T = pc(aT/a t )  (11) bbf7-;j 2 b =DIAMETER HEATER WIRE OF 

-OUTER where pC is the heat capacity per unit 
volume, and K is the conductivity. 
Consider the change of coordinates: 
T = v + To where To is the initial 

HEATER WIRE (RADIUS = b=.O005") f p 
0 0 0 0  

-THERMOCOUPLE LEADS 
(RADIUS = .0005") 

CIRCULATING LIQUID 
HOLES 

FIGURE I. PLANAR GEOMETRY 
CONSIDERED IN THEORY OF 

MEASUREMENT 

and is given by [30] 

temperature at a point 'la. 

The heat transfer equation now 
becomes 

where v = T - To, and k is the ther- 
mal  diffusivity. The solution may be 
written in t e rms  of a Green's function 

13 



dl] dt' 

dt' 

(12) 

where 8/8N is the normal partial  derivative drawn outward f rom the region of 
interest ,  G( r, r'; t - t') is the Green's function which satisfies the boundary 
conditions and is defined more  fully below, and v(?, t' = 0) is the initial 
temperature difference distribution over the two-dimensional plane of interest. 
The points in space denoted by the variables T and 2 are called the field points 
and source points, respectively. 
when Green's function is defined. 

A +  

The meaning of these terms becomes clear 

The Green's function has  the following mathematical properties: 

-t-t 

1. G = G ( r , r ' ;  t - t') for  all t > t' 

2 .  k V2 G = 8G/8t 

3 .  k Vf2G = -8G/8t' 

A- 

G ( r , r ' ;  0) dx' dy'= i 4* Sal1 space 

and 
A- A % - . +  

G ( r , r ' ;  0) = 0 iff r # r'. 

Physically, the Green's function is the solution of the heat t ransfer  equation 
for  a point source at time t = t'. 
called the source point. 
perature at that point for  a unit heat source located at r'. 

The source is located at 2, a d  this point is 
The Green's function at the field point Tis the tern- - 

14 
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The first term in equation (12) represents the effect of the initial tem- 
F o r  this discussion, suppose that perature not being equal to To everywhere. 

it does. 
later. 

The case where the first teriii is different f rom zero wil l  be considered 

The second term in equation (12) represents  the portion of the solution 
that is credited to the heat fluxes introduced by sources on the boundary. As 
wi l l  be seen, this term is the largest  for  the cases considered here.  

The third term in equation (12) represents  the effect of having a finite 
boundary o r ,  in other words, a finite heater wire .  

An expression for  Green's function can be found from an application of 
a Fourier  transformation to the definition with the boundary at infinity [31]. 

1 
G ( r ,  r'; t - t ' )  = 47rk(t - t ') 4 k ( t  - t') 

This expression is substituted into the solution as formulated in equation 
(12) , and the contour integral is integrated so that 

t 
v ( a , t )  k (-s) G a 27rb dt' 

0 b 

- st Vb Ga (4k( . t  2a - t')) 2 n b  dt'. 
0 

The field point w a s  considered at a and the source points w e r e  con- 
sidered at b where a>>b. 

Equation (14) can be simplified by letting x = a2/4kt and x '  = a2/4k( t - t') . 
Notice also that the rate of heat p e r  unit length of the heater is given by 

b' F = -2 7r bK (av/ar)  
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With these simplifications in mind, the solution becomes 

- J m v ( b , t )  (+)exp(-xf) dx' . 
X 

The second te rm in this equation can be shown to be small  compared to the 
first for  the case where m>b.  Rather than interrupt the derivation to prove 
the relative size,  this wil l  be done for  the particular method and geometry 
that is finally selected in Appendix A .  The solution may now be written as 

Relationship of Theory of Measuring to Methods 

Probe and Line Heater Souxcs Methodz. The heat flux F is constant 
The solution may be identified for  the probe and line heater source methods. 

with the exponential function [ 32 J where 

00 

v = (F/47rK) ( l /x ' )  exp(-x') dx'= -(F/47rk) E i ( - a2 /4k t ) .  (16) 
X 

For the case of x being small  

v =  ( F / 4 r K )  ( l O g ( l / X )  - y + x - x 2 / 4 + .  . . . )  

and y = 0.5772157. 

The value for  the conductivity can be determined by curve fitting with 
equation ( 16) o r  where x << 1 from the slope of the data plotted on log paper. 
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where Av = v2 - vi and the time the temperature changes from the original 
temperature at point a is ti, etc. Notice that only a change in temperature 
and the heat flux need be determined. 

Pulse Method. The pulse method differs from the above only through the 
heat flux F where F vanishes for  some time t greater  than a given time T .  

For this case where t >> T ,  the solution follows from equation (15) with 

v = ( i / K )  sT (F/47r(t - t') exp[-a2/4k(t  - t ' ) ]  dt' 
0 

7- 
( 1/4 7rK t) exp [-a2/4 k tl s F dt' 

0 

o r  

v (Q/4nKt) exp[-a2/4kt] . (20) 

The quantity Q is the total heat input in the pulse pe r  unit length of the heater 
wire. 

Differentiated Line Heater Source Method. The DLHS method w a s  the 
method selected and used in measuring the thermal conductivity as reported 
herein in the section MEASUREMENTS. 

The DLHS method differs from the LHS method only in that the LHS 
temperature is differentiated with respect to time. From equation (16)  

o r  

F (%)= 4nKt exp( -a2/4 k t) . 
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The solution is in the form of a pulse, as expected, where the front pa r t  
behaves as exp[-a2/4k t] and the back pa r t  as l/t. Several ways of finding 
the diffusivity and conductivity exist depending on which characterization is 
convenient . 

Using the maximum value for  (dv/dt) and the corresponding time t 
m’ the conductivity is written below as 

K = F/47re (dv/dt) t . m m  

From Figure 2 ,  which is a plot of the solution, a more  precise  characterization 
is found by considering the time it takes to reach half of the maximum. 
constant tilz/t m 
The conductivity now becomes 

The 
= 0.37337 w a s  found by a numerical iteration of equation ( 2 0 ) .  

K = (0 .37337)  F/4 r e  (dv/dt) , 

Comparison between Methods 

All  of the methods mentioned in the preceding subsection Theory of 
Measurements were tried. 
large to encourage further search until the last method (DLHS method) w a s  
discovered. It has many of the advantages of the former methods but f e w  of 
their faults. 

The difficulties cited for  each one were sufficiently 

Theoretically, each method has roughly the same accuracy assuming 
the initial conditions for  the particular solution could be met. The proper IC 
in reality were quite difficult to obtain. A solution can be found for  the DLHS 
method when the IC are of a more general form than considered previously. 
Consider the initial temperature to be of any form. 
(12)  is now not equal to zero and can be expressed as a power series. 
the temperature is changed at the boundaries by a step function, for  example, 
by surrounding the cylindrical geometry with liquid nitrogen o r  hot oil, etc. 
The temperature at a point (af ter  initial transients) is described quite well  by 
the first few t e rms  of a power ser ies .  

The first te rm in equation 
Suppose 

In fact, the change is quite l inear for  
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FIGURE 2 .  PLOT O F  SOLUTION FOR DIFFERENTIATED LINE 
HEATER SOURCE METHOD 
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evacuated powders over a period of about an hour. 
to the heat t ransfer  equation with IC as described above can be written as 

This means that the solution 

t F  exp [-a2/4 k ( t - t')] dt' v = A0 + AI t +  J , X ( t  - t') 
0 

where A, and A, are constants. 

The DLHS method considers the derivative of the temperature change 
as in equation (20) ; hence, 

exp ( a2/4 k t) F * = A 1 + -  
d t- 47rKt 

and 

With this arrangement, the conductivity can be measured within a few minutes 
while the temperature is changing uniformly. 

EXPER IMENTS US ING DIFFERENTIATED L INE 
HEATER SOURCE METHOD 

Ex per i menta I A r ra ngemen t 

The heater and thermocouple assembly for  samples 2 and 3 was con- 
structed as shown in Figure 3. 
wire. It is attached to copper posts on a glass base. The other parallel  w i r e  
is an iron constantan thermocouple also 0.001 of an inch in diameter. The 
thermocouple junction is located midway between two posts. The iron lead is 
attached to an iron post and the constantan lead to a constantan post. Similar 
w i r e s  are run to the exit electrical connector in the vacuum system. The two 
wires are usually about 0.06 centimeter apar t  and about 15 centimeters long. 

The heater is a 0.001-inch diameter constantan 
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FIGURE 3. HEATER AND THERMO- 
COUPLE ASSEMBLY FOR SAMPLES 

2 AND 3 

Most of the reported measure- 
ments w e r e  made with a different 
experimental arrangement. The 
arrangement is changed so that the 
temperature range can be increased 
from 200" to 400°K to 100" to 500°K. 
This is accomplished by constructing 
a new line heater and thermocouple 
assembly and placing it into a glass 
tube which runs outside of the vacuum 
system. The new line heater and 
thermocouple assembly is shown in 
Figure 5. 
are the same as previously described. 
The exception is now that the length 
of the w i r e s  is of the order  of 20 
centimeters. The supports are made 
of glass and glued together with a 
ceramic.  The w i r e  heater and ther- 

The w i r e s  and dimensions 

The sample holder was placed, 
for the initial runs and for  samples 2 
and 3,  into s lots  of a massive hollow 
stainless steel block. The block is 
shown in Figure 4. Two pipes c a r r y  
a fluid through the block. 
either liquid nitrogen, air, o r  oil. The 
block is used as a means of controlling 
the initial conditions. It is insulated 
from the surroundings by aluminum 
foil, and the bottom rests on powder 
insulation. The highest temperature 
that the samples can reach in this con- 
figuration is about 400°K. The cham- 
ber  is evacuated for  several  days 
while the sample is maintained at this 
temperature. 

The fluid is 

FIGURE 4. SAMPLE HOLDER FOR 
SAMPLES 2 AND 3 

mocouple assembly is placed into the glass tubes as depicted in  Figure 6. 
open into the vacuum chamber through the base plate. 
a container inside the vacuum chamber, and the chamber is evacuated. The tube 
is brought to a temperature of about 500°K by a nicrome wire heater surrounding 
the tube. 

They 
The powder is put into 

The powder is slowly poured into the tube from the container while 
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posts '1 

FIGURE 5. NEW LINE HEATER 
AND THERMOCOUPLE ASSEMBLY 

still in a vacuum over  a period of 8 
hours. This procedure ensures that 
the powder is thoroughly outgassed. 
Poorly outgassed materials exhibit 
erratic measured values over a period 
of time. 

The temperature of the tube w a s  
controlled by submersing it in LN, o r  by 
heat supplied from the nicrome heater. 
The rate of change of the temperature 
is controlled by the radiation shielding 
of a dewar, evaporating LN,, and/or 
the heater.  

The electrical  hookup is de- 
picted in Figure 7. 
across  the line heater is supplied by 
the Fluke precision dc power supply 
model 301E. Constantan has a low 
thermal coefficient of resistivity so 
that the power input remains constant 
during a measurement. The tempera- 
ture of the powder is measured at the 

The voltage applied 

junction through balancing a Leeds and Northrop K-3 universal potentiometer 
until a null condition is reached. The reference junction is maintained at the 
triple point by a Joe Kaye thermocouple reference sys tem.  Amplifiers (I) and 
( 2 )  are Leeds and Northrop dc microvolt amplifiers model 9835. The differen- 
tiating circuit  differentiates the zero to I volt output of amplifier (1). Figure 8 
is a schematic of the differentiating circuit  with the appropriate values of the 
components marked. The constant rate of change te rm w a s  initially bucked to 
a null condition with potentiometer ( 2 )  which is constructed from a battery and 
a variable resistor. 
recorder.  Al l  the pertinent data that were taken are shown. 

Figure 9 is a typical t race of a run on the s t r ip  char t  

A series of runs begins as follows. After the sample is outgassed, the 
temperature is changed to some initial temperature. 
to warm up and stabilize during this time. The scale factors on amplifiers (1) 
and ( 2 )  are se t  so that they wi l l  not over-run during a test. 
is next subtracted from the output of the differentiation circuit  by setting 

The electronics is allowed 

The rate of change 
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.bell jar 

potentiometer ( 2 )  . The temperature is 
measured by potentiometer ( I )  , and 
then the run is initiated almost immed- 
iately by applying a voltage across  the 
line heater. 

FIGURE 6. GLASS TUBE SAMPLE 
HOLDER 

Somewhat more difficult is 
expressing the time ra te  of change of 
the temperature dv/dt in terms of 
measured quantities. The voltage 
generated by the thermocouple is 
related to the temperature by a 
thermoelectric coefficient by the 
expression 

e = C Y V  t 

Data Reduction 

The general form of equation 
(22) i n  the section METHOD OF 
MEASUREMENT is not explicitly in 
terms of the measured quantities. For  
example, the heat flux F per unit 
length of the heater is given in te rms  
of the measured voltage V, current I, 
and length of the heater wire L so that 

HERMOCOUPLE 

REFERENCE 
JUNCTION 

RECORDER 

FIGURE 7. DEPICTION O F  ELEC- 
TRICAL HOOKUP 
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where e is the voltage generated by 

the thermocouple, and Q! is the ther- 
moelectric coefficient which is a func- 
tion of temperature. The amplified 

by ei becomes 

t 

0 3 thermocouple voltage signal signified 

Input 

ei = et/Si FIGURE 8. SCHEMATIC OF 
DIFFERENTIATING CIRCUIT 

and has a value between zero and I 
volt. The quantity l/S, is the gain 
factor of amplifier ( I )  . 

The voltage ei is differentiated 
by the differentiating circuit  resulting 
in a signal e where d 

and where RC is the time constant of 
the differentiating circuit. The quan- 
tity ed is the voltage input to the 

second amplifier and is related to the 
char t  reading of the recorder  e . 
Actually ec w a s  calibrated in units of 

centivolts. The value of (e  / l oo )  is 

in volts. This relation between e 

and e is given by 

C 

C 

C 

d 

FIGURE 9. TYPICAL TRACE OF 
RUN ON STRIP CHART RECORDER 

e = RC( del/dt) . 
d 
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The gain of amplifier ( 2 )  is i/Sz. Solving f o r  dv/dt f rom equations (28) 
through (32)  in te rms  of the measured or  known quantities, 

The conductivity can now be expressed as 

exp ( -a2/4 k t) . VI a R C  
47rLSi Sz (ec/iOO)t K =  ( 34) 

Three methods can be used to reduce the strip chart  data to find the 
value of the conductivity. 
paragraphs . 

These methods are described briefly in the following 

Method i consisted of using the maximum chart  reading and substituting 
F o r  this case into equation (24) of the METHOD OF MEASUREMENT section. 

K = 0.37337 BO Bl/(exp (I) ecm ti/2) 

Bo = VI/4 T L (35)  

Method 2 uses  a least square adjustment of the conductivity ( K )  and the 
Equation ( 34) may be rewritten in the form of parametery y = a2/4 k. 

where 

V I a  RC 
47rLS1 s, ( i / i O O )  * 

B =  
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The data are in the form of the measured voltage ( e  .) versus the time ( t . )  . 
The subscript i labels the points picked. 

c1 1 

The deviation ( f )  is given by 

The least squares adjustment involves changing the parameters  K and y such 
that the deviation ( f )  is a minimum. The quantity e was the actual char t  

reading. 
Variable Metric Minimization Scheme" [ 331. 
guesses of K and y and also an estimate of how accurately they are known. 
The program, as obtained from D r .  D. L. Decker, was  modified and put in  a 
general subprogram format. 
tions were performed on IBM 7040 and 7094 computers. 

C 

The minimization was  performed by a numerical method called ITA 
This process requires the initial 

Fortran IV was  the language used. The computa- 

The third and last method of evaluating the conductivity is s imilar  to 
the first. Remember the output of the s t r ip  char t  is in the form of a pulse. 
Two places occur where the pulse is equal to one-half of the maximum. The 
first method uses the first point where the voltage increases  to one-half of its 
maximum value. The voltage decreases after the maximum has been reached 
and asymptotically approaches the initial voltage. 
point where the voltage decreases to one-half of its maximum value where 

The third method uses the 

tf = 4 . 3 1 6  tm 
1/ 2 

Equation (35)  then becomes 

where equation (39) is the governing equation used by this method. 
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Sources of Errors 

The greatest  source of systematic e r r o r s  for  the particular experimental 
arrangement used in this study w a s  calibration. The predominant one was  the 
uncertainty of the value of RC. 
plus o r  minus 10 percent. The voltage V, current  I, and length of the heater 
w i r e  L and all other sources  of calibration e r r o r  were negligibly small  in 
comparison. Of particular interest  is the way in which the length of the heater 
w i r e  was found. The resistance of a known length of w i r e  w a s  measured. The 
resistance of the w i r e  on the assembled sample holder was also measured. A 
simple proportion gives the length accurate to about 0 . 3  percent o r  less. 

The absolute value of C was determined within 

A conservative estimate of how well  the char t  could be read w a s  plus 
o r  minus 0 .01  volt. 
upon the chart  speed used, but usually it w a s  about I second. The degree of 
this e r r o r  rests upon the selected method of data reduction. The uncertainty 
in the conductivity using method 1 w a s  within one to ten percent depending on 
the particular measurement and data trace. For  method 2 and method 3 a 
reasonable estimate of the uncertainty is less than about three percent. 

The precision with which time could be read depended 

One source of e r r o r  could be attributed to an uncertainty in the tempera- 
The temperature was  only recorded initially before the run 

The assumption that this temperature is representative wil l  be reason- 
ture measurement. 
started.  
able if a steady state condition is initially established. Most of the measure- 
ments, however, are taken while the temperature is changing. The rate of 
change w a s  l e s s  than a few degrees over the period of the test. Hence, tem- 
perature is only known within plus o r  minus about 2 ° K .  

Several assumptions were made in the derivation of the solution of the 
partial  heat equation in the preceding section of this report. A t  that time, the 
comment w a s  made that the e r r o r s  introduced by making these assumptions 
would be deferred to this section. These e r r o r s  will  be estimated here.  

The sum total of all e r r o r s  introduced by all of the assumptions can be 
estimated by noting the difference in the solution as derived previously and the 
exact solution. 
exact solution. 

A perturbation method will be used to find an estimate of the 

The conductivity is a function of temperature. The value of the conduc- 
tivity wi l l  be approximated by the first two t e rms  of a Taylor's expansion so 
that 
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where KO is the conductivity at TO and is a constant, vo is the solution to the 
heat t ransfer  equation where the conductivity w a s  assumed to be constant, etc. 
For our  particular case, the highest temperature change possible can be  shown 
to be less than 30°K. 
that the conductivity can be approximated quite well  by a l inear function. 

The results in the section on MEASUREMENTS indicate 

The value of E is small  and can be estimated by considering the theoreti- 
cal temperature dependence of the conductivity as derived in the INTRODUCTION 
to this report .  The predicted temperature dependence is 

K = A T 3 + B .  

This expression may be expanded so that 

where KO and E are given by 

K, =  AT,^ + B 

and 

E = 3ATo2/K0 , 

For this typical example 

E Y 3/To* 

( 43) 
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The lowest temperature for  which the conductivity w a s  measured is 100°K 
so that E = 0.03.  

The quantity of interest  is av (ay  t, which is the time rate of change 

of the difference in temperature located at = a. The partial  differential 
heat equation must  hold everywhere in the region and can be written as point 
a and time t as 

a t  

Perturbation theory considers a first-order correction to a known 
solution of a very s imilar  problem. The temperature change can be represented 
by 

v = vo + u i c  

where E V ~  is the first-order correction to the known solution (vo) . 

Expanding equation ( 45) and dropping second-order te rms ,  

av avo + E av, 
a t  a t  a t  

- 

The quantity that is measured at position a is av/at, and the conductivity is 
evaluated by considering (av/at) A ( avo/at). 
is to show 

The whole object of this exercise 

avo >> E (  avl a t  ) . 
a t  
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From equation (47) 

or  

= ko v2 (vO2/2) + 4 V2 vi  . a t  

The f i r s t  term on the right in this last equation reaches a maximum value with 
respect to time. 
(50) becomes 

Let this maximum value be represented by I'M. ' I  Equation 

o r  

where M is independent of time and position. A t  a particular time consider 
a constant MI so that 

a ( v  - = ko v2 (vi - M't) . 
a t  

( 5 3 )  

For this time and place 

Since the time picked is arbi t rary,  the inequality-equal statement holds for  all 
values of time. 
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avi(a7t)  9 ko vo v 2 v o  + b(Av0)’  + ko V2vo . 
at  

The terms in the above equation are easily found from the expression of vo 
so that 

v v o  =( %) (2) $ r 

and 

Equation (55) can now be written as 

a t  5 vg a t  %+(y)t(2)2+(at) % * 

The ratio defining E 

is an estimate of the percent e r r o r  introduced herein by the assumptions in  the 
section METHOD O F  MEASUREMENT. Using equation (58) where the second 
term is of the same orde r  of magnitude as the first term, 

E L ( 1 0 0 )  ( 0 . 0 3 )  ( 3 + 3 + 1 ) ~ 2 1 7 0 .  ( 60) 

The value f o r  the e r r o r  as expressed above is fo r  the worst possible case. At  
room temperature where E = 0. 01, 



The value of the conductivity changes more  than an order  of magnitude 
f o r  the temperature range of I O O O K  to 50OoK, as will be shown later. Er rors  
of seven percent o r  even 21 percent are not very  significant when considering 
the gross  behavior. More will be said about the magnitudes of the e r r o r s  and 
their  effect onthe resul ts  in  the concluding section of this report. 

Selection of Powder 

Spherical glass  beads, called micro-beads, were selected as the powder. 
They conform to some of the simple assumptions of the theory and are obtainable 
in a number of sizes.  The data may also be compared with the work of other 
experimenters. According to the manufacturer's specification, less than one 
percent of the particles are sharp o r  angular; less than two percent show milki- 
ness  o r  surface scoring or  scathing, and l e s s  than one-half percent any foreign 
matter.  The beads are formed from a barium silicate glass. 

MEASUREMENTS 

The r a w  data gathered are listed in Appendixes B and C. 
essential for  the calculation of the conductivity by method I are listed in  
Appendix B. Appendix C lists the data peculiar to method 2. Appendix B is 
arranged with respect  to ascending temperature and not in the order  in which 
the tests were made. Three particle s izes  w e r e  chosen. Table I shows the 
relationship between the particle s ize  and the sample number. 

The data 

TABLE I. RELATIONSHIP BETWEEN PARTICLE SIZES O F  
POWDER AND SAMPLE NUMBERS 

I 
~~ ~~ I Particle s ize  I Porosity I 

I I 

microns,  p P 

10 to 201.1 
38 to 531.1 

125 to 243p 

0 .41  
0.38 
0. 50 

The calculated conductivities are listed in Tables 11 through T Eac n 
row refers to one run. 
followed by the sample number. 

The first column is the run number and is immediately 
The second digit on samples 2 and 3 indicates 
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TABLE II. CALCULATED CONDUCTIVITPES FOR 10 TO 201.1 POWDERS 

Run 

407 

408 

409 

41 0 

41 I 

412 

413 

414 

41 6 

402 

404 

No. 

7 

7 

7 

7 

7 

7 

7 

7 

7 

7 

7 

Temp, OK 
~ 

32 6 

335 

351 

377 

3 96 

42 5 

446 

46 I 

48 I 

513 

513 
__ 

Conductivity 

Method I I Method.2 

I .  71 

2. 06 

I .  71 

2.01 

2. 06 

2. 04 

2.43 

2.93 

2.78 

4.90 

4.73 

1.48 

I. 49 

I. 45 

I. 62 

I. 87 

2.09 

2. 38 

2.53 

2.83 

4.21 

3.90 

I 
I 

L ~~ 

Method 3 

- 

1.22 

I. 42 

I. 73 

I. 90 

2.29 

2.74 

2.74 

3.25 

3.48 

3.41 

a r ime,  sec 

W/cm? K )  

- 

168 

145 

116.5 

I10 

96 

86 

86.5 

73.2 

53.2 

57 

a. Time consumed after initiation of a run before reaching the second point 
which is equal to one-half of the maximum 

a different day o r  s imilar  situations. 
degrees Kelvin. 
method 3 is indicated in the next three columns, respectively. Method 2 was 
applied to most  of the runs except samples 2 and 3. 
w a s  performed by IBM 7040, 7094, and 1130 computers. A l l  mathematical 
manipulations w e r e  of a straightforward nature; hence, they wil l  not be reproduced 
here.  

The next column lists the temperature in 
The conductivity as calculated by method I ,  method 2, and/or 

The actual data reduction 
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TABLE III. CALCULATED CONDUCTIVITIES FOR 38 TO 531.1 POWDERS 

R U  

418 

41 9 

42 0 

42 1 

422 

42 3 

424 

406 

370 

37 2 

375 

378 

380 

41 5 

381 

41 7 

382 

383 

403 

405 

384 

385 

362 

365 

386 

- 
- -  

No. 

8 

8 

8 

8 

8 

8 

8 

8 

6 

G 

ti 

6 

6 

8 

ti 

8 

6 

6 

8 

8 

6 

6 

G 

6 

6 
. _  ~ 

Temp, 'I( 

100 

126 

172 

2 04 

232 

248 

265 

3 0 5 

346 

3 ti3 

3 7 (i 

3 84 

392 

422 

414 

449 

460 

569 

17G 

47(i 

479 

486 

489 

489 

4 92 
-~ 

Method 1 

0.37 

0. 5 1  

0 .  72 

0 .89  

1. 07 

1 . 2 2  

1.1' 

1. 31 

1 . 6 9  

1 . 9 6  

2 .  u5 

2 . 1 1  

2 . 0 1  

2 .  83 

:;. 31 

2 .  52 

3 .  65 

3 .  85 

::. s3 

3 .  89 

4.  It; 

4 . 2 1  

4 . 3 8  

4.56 

4 .17  

. . . . . __ . 
Method 2 

0.35 

0 . 5 2  

0 .  65 

0 . 9 5  

1 . 0 4  

1. 17 

1 . 1 0  

1. 62 

1 . 9 4  

2 . 1 0  

1. 96 

2.6'7 

3.35  

3 . 2 2  

3.90  

3.83 

3 . 8 2  

3.87  

4. is 
4 . 1 9  

4 . 5 2  

4 . 8 4  

- 
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TABLE IV. CALCULATED CONDUCTIVITIES FOR SAMPLE 
NUMBERS WITH 125 TO 2431.1 POWDERS 

~~ 

Run 

389 
390 
391 
392 
393 
3 94 
395 
396 
397 
3 98 
399 
400 
401 
363 
364 
366 
367 
360 
368 
354 
355 
353 
369 
359 
387 
37 I 
373 
358 
374 
376 
356 
3 57 
388 
377 
352 
379 
351 
350 
348 
34 9 
350 

No. 

5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 

Temp, "K 

103 
104 
107 
I 1 0  
115 
121 
131 
141 
150 
165 
177 
i 96 
208 
316 
323 
333 
351 
365 
365 
385 
385 
387 
388 
40 I 
406 
416 
425 
429 
433 
442 
444 
445 
449 
459 
468 
478 
48 I 
48 5 
485 
485 
485 

Conductivity ( IO- '  W/cm K) 

Method I Method 2 

0.17 
0. 17 
0. 18 
0. 17 
0. 18 
0. 18 
0.23 
0.25 
0.28 
0.35 
0.46 
0. 60 
0. 65 
I. 48 
I. 48 
1.84 
2. 14 
2.60 
2.60 
2.92 
2.84 
3.27 
3.39 
3.26 
3.16 
4.34 
4.82 
4.29 
4.94 
5.04 
5.22 
4.85 
5.91 
5.89 
5.36 
6. 59 
5.66 
5.85 

5. 85 
5.85 

5.97 

0. 17 
0. 17 
0. 18 
0.17 
0. 18 
0.18 
0.24 
0.26 
0.29 
0.36 
0.47 
0.57 
0.62 
1.54 
I. 62 
I. 86 
2.23 
2.67 
2.57 
2.97 
2.93 
3.43 
3.42 
3.35 
3.23 
5.08 
4.59 
4.23 
4.86 
4.97 

4.96 
6.35 
5. 62 
5.59 
6.74 
5. 56 
6.04 
5. 98 
5.85 
6.01 

- 
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TABLE V. CALCULATED CONDUCTIVITIES FOR SAMPLE NUMBER 2 
WITH 125 TO 243p POWDERS 

325 

323 

306 

327 

329 

33 I 

312 

333 

317 

319 

32 I 

291 

2 94 

300 

2 96 

298 

302 

No. 

23 

23 

22 

23 

23 

23 

22 

23 

22 

22 

22 

21 

21 

21 

21 

21 

21 

. ~ ~. 

.~ 

Temp, OK 

302 

303 

304 

309 

323 

335 

336 

348 

370 

374 

382 

402 

402 

402 

403 

403 

403 
~ 

.. - .  

Zonductivity ( 1 0-5 W/cmo K) 

Method I 

I. 05 

I. 18 

I. 10 

.97  

I .  33 

i. 45 

I.. 50 

I. 61 

2.09 

2.18 

2.21 

2.55 

2.65 

2.55 

2.63 

2.75 

2.55 
- -. . 

The conductivity versus  temperature is plotted in Figures 10 through 14. 
The abscissa is the absolute temperature in degrees Kelvin, and the conductivity 
is expressed along the ordinate in units of W/cm°K. The selection of a 
semilog graph presentation allows all of the conductivity data for  one particle 
s ize  to be conveniently located on one graph. Figure 10 is a plot of the 10 to 
20p s ize  powder conductivity data. Method 3 gives the smoothest data. The 
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RUTI 

336 

339 

370 

340 

341 

342 

343 

335 

324 

326 

307 

309 

328 

311 

330 

332 

313 

315 

316 

334 

318 

320 

322 

397 

299 

301 

303 

'IVITIES FOR SAMPLE 
31-1 POWDERS NUMBER 3 WITH 125 TO 24 

No. -1 Temp, OK 

35 215 

35 215 

35 222 

36 223 

36 238 

36 255 

36 270 

34 301 

33 302 

33 3 02 

32 303 

32 305 

33 315 

32 327 

33 33 1 

33 341 

32 342 

32 351 

32 360 

33 3 58 

32 371 

32 377 

32 385 

31 40 1 

31 40 1 

31 401 

31 40 1 
- 

Conductivity ( W/cmo K) 

Method 1 

0.48 

0.49 

0.48 

0.54 

0. 58 

0. 67 

0.59 

0.99 

I. 05 

1.01 

1. 08 

1. 08 

1.12 

I. 17 

1.39 

1.35 

1. 26 

1.40 

1. 61 

1.55 

1.73 

I. 89 

1.98 

2.14 

2. 15 

2. 15 

2. 15 
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inaximum chart  reading for  these measurements was  reached in a time t on 

the order  of 10 seconds. This means that the uncertainty in this time is large 
for  the usual method I data reduction procedure. The uncertainty explains the 
scat ter  in the data. The initial points near t 

m 

were used by method 2. m 

Figure 11 is a plot of the data for  the 38 to 531.1 s ize  powder. The data 
represented by the triangles were found in the l i terature [ 141. 
the pertinent properties of these measurements. 

Table VII gives 

TABLE VII. GLASS BEADS, 50p AVERAGE PARTICLE SIZE 

Temp, 
Method 

Probe 
Guarded cold 

plate 

Gas Pressure ,  
torr 

8 x 
5 x 
2 x 

These values a r e  grea te r  than the other values reported. 

Conductivity, 
l 0-5 W/cni' K 

2 .5  
3 . 2  
1 .7  

The relatively high 
gas pressure  may have resulted i n  an appreciable gas conduction. 

The data represented by the squares w e r e  also found in the l i terature 
These data were f o r  44 to 74p glass beads at a pressure  of less than [ 2 8 ] .  

2 x 
for  at least  24 hours. 

torr and were gathered by an LHS method. The system was  stablized 

Figure 12 is a plot of the 125 to 243p of sample 5 and s imilar  sized 
The data represented by the triangles 

The data represented by the 
powders recorded in the l i terature.  
have the properties given in Table VI11 [14]. 
square were also obtained from the l i terature [ 281 . 

TABLE VIII. 1 5 0 , ~  AVERAGE PARTIC LE SIZE 

Me tho d 

LHS 
Pro be 
Guarded cold plate 

~ - 

I ~- ~ 

298 
2 98 
190 

Gas Pressure, 
t o r r  

.- 

Conductivity 
W / c m o ~  

5. 0 
5 .0  
4. 6 
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FIGURE 14. COMPOSITE O F  
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POINTS 
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Figure 13 is a plot of the re- 
maining 125 to 243p data of samples 
3 and 4. The curve in  this diagram 
describes the data of sample 5. 
ure 14 is a composite of Figures 10, 

Fig- 

11, and 12, where th 
the data points. 

CONCLUS 

I lines represent 

ONS 

Discussion 

Three ways of calculating the 
conductivity w e r e  presented in the 
preceding section of this report .  The 
accuracy of each depends on a number 
of factors.  From a statistical stand- 
point the greater the number of data 
points used, the more  accurate the 
conductivity. The least square 
method (method 2) uses many more 

points than the other methods and should be more  accurate. 
should be weighted statistically according to its significance. 

Each data point 

Method 2 gives nearly the same resul ts  as the numerically simpler 
methods of using the halfway points of the maximum on the char t  recording, 
as in methods i and 3.  
because the length of the run is shorter ,  and hence the uniform rate of change 
of the temperature, which is initially determined, need hold for  a shor te r  length 
of time when compared to method 3. Method 3 becomes more useful ,  however, 
when the uncertainty in the f i r s t  halfway point becomes unacceptable as demon- 
s t ra ted by the conductivity data of the 10 to 20p powder. Except fo r  this case, 
the conductivity data found through method 1 is used throughout the remainder 
of this chapter. 

Using the first halfway point (method 1) is useful 

Two equations were tested to see which best describes conductivity as 
a function of temperature. Equation ( 6 2 )  is equivalent to equations (8) , ( 9 ) ,  
and (10) .  In these equations, all of the quantities except perhaps the intrinsic 
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solid conductivity K are independent of temperature. The total conductivity sol  
can then be written as some constant t imes K 

the temperature to the third power. Values for  K 

tu re  for  the particular glass could not be found in the literature. 
tivity does, however, have nearly the same temperature dependence as its 
heat capacity [34] .  Values  for the heat capacity were found in the l i terature 
between 300" to 500" K [ 351 and were measured between 200" to 300" K and 
extrapolated from 200 to 100" K. A sixth-order polynomial w a s  fitted to the 
heat capacity data by the least squares method. 
written in t e rms  of heat capacity where 

plus another constant times 

so l  

sol  
as a function of tempera- 

The conduc- 

The first equation can now be 

K = E C ( T ) + D T 3 .  (62) 

Watson made the approximation that K is nearly independent of 
sol  

temperature [ 36 J . 
that 

The second equation corresponds to this approximation so 

K = A T 3 + B .  (63) 

Equations of the form of equations (62) and (63) w e r e  fitted to the con- 
ductivity versus  temperature data by the least square method. 
A, By D and E are presented in Table IX. Some of the conductivity data appear 
disjointed between 200" and 300°K. Separate calculations were made for  all 
of the data below and above 300°K. The quantity represented by f is the sum 
of the squares of the deviation and is a measure of how well  the curve fits the 
data. 

The values of 

The values of f are slightly lower for equation (63) .  

Fo r  the 10 to 20p powder the curves of the form of equations (62) and 
(63) are practically indistinguishable over the range of the data. 
are represented by a single line in Figure 15. 

These curves 

Figure 16 represents the comparison between the experimental data for  
the 38 to 53p range powder and equation (62 ) .  The lower curve is the best  f i t  
for all data above 300" K. Figure 18  
is a plot of equations (62) and (63) and the data on a Cartesian coordinate sys- 
tem. 
at the lower conductivity values as with the semilog graphs. 

Figure 17 shows the f i t  of equation (63 ) .  

The discrepancy between the data points and the curves is not as apparent 
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TABLE M. VALUES OF CONSTANTS A, B, D, AND E FOUND BY LEAST SQUARE METHOD 

24 

Particle Size 

10 to 20pa 

10 to .'OMa 

10 to ?oba 

38 to 53pa 

38 to 53pc 

b 
38 to 53p 

125 to 243pa 

L25 to 243: 

125 to 243pc 

125 to 243pa 

125 to 243pa 

0.759 

, W M-10 K-1 

Method of No. of ' D 
Sample Data Reduction Experiments x 

3 

2 

1 

1 

1 

1 

1 

1 

1 

1 

1 

17 

7 

41 

28 

13 

27 

17 

0.196 

1.36 

0.103 

-0.140 

0.295 

0.264 

-0.144 

0.209 

0.241 

0.264 

0.292 

0.353 

0.153 

0.538 

0.566 

0.545 

0.293 

0.424 

f-I 

0.0139 

0.0585 

0.221 

0.0351 

0.0147 

0.0035 

0.108 

0.152 

0.00044 

0.0039 

0.00523 

10-~ 

0.484 

0.346 

0.472 

0.454 

0.153 

0.437 

0.071 

-0.132 

0.0870 

0.151 

-0.093 

x 10-10 f-II 

0.230 

0.252 

0.276 

0.327 

0.358 

0.452 

0. 542 

0.565 

0.639 

0.310 

0.417 

0.0155 

0.0556 

0.213 

0.0241 

0.0143 

0.0083 

0.107 

0.151 

0.00034 

0.0037 

0.00522 

a. All the data points used in computing the values 

b. All the data points above 300.K w e d  in computing the values 

e. All the data points below 300.K w e d  in computing the values 



Figures 19 and 20 are comparisons of the 125 to 243p data of sample 5. 
Again equation (63) appears slightly more  representative. Samples 2 and 3 had 
f e w e r  data points and were not spread over as wide a temperature range as 
sample 5; hence, less significance is associated with the values of their constants 
A, B, D, and E. Figure 21 depicts the f i t  fo r  these two samples. 

Table IX and Figures 15 through 21 show Watson's equation fitting the 
data slightly better than equation (62) . 
The values of B in Table IX were compared to Watscn's values in Figure 22 
[21 J . His values a r e  bounded by the rectangles enclosing the dotted-in area.  
The data of this report  are represented by the thatched-in rectangle. 
vertical span of the rectangle represents a two-standard deviation range in B 
o r  one-standard deviation from the mean in each direction. 
represents the particle s ize  distribution. 
mental e r r o r .  

The difference, however, is small. 

The 

The horizontal span 
Both sets of data agree within experi- 

Figure 23 compares the values of A with Watson's values [21 ] .  H i s  
values a r e  correspondingly larger fo r  each measured particle size. 
labeled lines describe the l imits of the calculated values as expressed by the 
equations of Wesselink and Laubitz. The limits a r e  determined by the range of 
porosity. 
expresses the measured data, as reported here ,  better than any of the other 
expressions. 

The 

The expression developed by Schotte is independent of porosity and 

The possibility exists of the particles not being completely opaque. 
The mean f r ee  path is given by A where 

as can be shown from equation ( 6 ) .  Table X shows the relationship between the 
particle size,  the value of A ,  and the mean f ree  path ( A ) .  

TABLE X. MEAN FREE PATH 

Particle Size, 
I-1 

10 to 20 
38 to 53 

125 to 243 

A ,  
I-1 

91.3 

- 

108 
134 

. -  

A'  
cr 

I-1 

32 
11 
14 
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WATSON'S DATA 
\TA REPORTED HERE 

FIGURE 23. VALUES OF A IN 
EQUATION K = AT3 + B 

The values for  A in Table X demon- 
strate that the powder is transparent 
for  the 10 to 201.1 and 38 to 531.1 
powder. 

Since the mean free path ( A )  
may be temperature dependent, the 
conductivity may not behave exactly 
as described by equation (63) .  One 
way to test how well  this equation 
holds is to consider 

K = A T X + B  ( 64) 

where A ,  x, and B are now the 
parameters  to be found by the least 
square method. A least square 
adjustment of the parameters  was  
performed, and the resul ts  are 

recorded in Table XI, 

TABLE XI. VALUE FOR EXPONENT 

Particle Size Sample X One Standard Deviation 

10 to 20p 
38 to 531.1 

125 to 2 4 3 , ~  
125 to 243p 
125 to 2431.1 

7 2.45 I. 39 
67 8 3.59 0.22 

5 3 .11  0 . 2 0  
3 3.18 0.26 
2 2.68 0.89 

Al l  values of x are within one standard deviation of x equals three 
except the 38 to 531.1 powder. The value of x for  the 10 to 20p powder is com- 
paratively uncertain. This means that the radiative conductivity may not 
totally behave as T3 but may behave slightly different for the 10 to 201.1 and 
38 to 531.1 powders. I€ the absorption coefficients w e r e  known, this different 
behavior could be calculated as outlined in the INTRODUCTION. 
ity for  the 125 to 243p powder apparently behaves very  much like the T3 
dependency. 
are opaque. 

The conductiv- 

This should be expected because the particles in this s ize  powder 
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Summary 

A method of measuring the thermal conductivity has  been developed that 
is quite suitable for  measuring evacuated powders. 
results. It is fast ,  and simple initial and boundary conditions are feasible. 
temperature dispersion during any one measurement is small  enough to make 
measurements as a function of temperature meaningful. 

This method gives consistent 
The 

The conductivity w a s  measured for  glass beads in a vacuum of at least 
2 x 
sizes used w e r e  10 to 20p, 38 to 53p, and 125 to 243p. The conductivity can be 
represented by an expression of K = AT3 + B where A and B a r e  constants. 
This result has one of two consequences. One is that the model used to develop 
the mathematical expression for  the nonradiative component of heat transfer,  
as given in equation ( 6 2 )  , may not be sufficiently descriptive. 
that the heat capacity is not as strongly dependent on temperature as reported 
in the literature. 

tor r  o r  better over a temperature range of 100" to 500°K. The particle 

The other is 

The value of A does not change significantly over the range in powder 
s izes  from 10 to 2431.1. 
described for  these particle s izes  by the theories of Wesselink, Laubitz, and 
Russell. 
considered. 

This means that the value of A is not adequately 

Laubitz's expression is more descriptive when Watson's data are 

Particle s izes  of 100p o r  less begin to become transparent to the 
thermal radiation in the temperature range considered here.  For  this case,  
a simple model is sufficient to account for the behavior by considering the mean 
f ree  path length ( A )  of a photon. 

A comparison between Watson's data and the data reported here  is 
difficult. Watson's data include a wide range of porosity. 
the data reported here  are approximately the same.  

The porosities for  

For an equal number of measurements, the determined values of A and 
One obvious advantage to the approach followed here  B should be comparable. 

is that the measured temperature dependence can be displayed. Watson only 
determined the constants A and B. 
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Recommendations 

Further measurements and analysis of the constants A and B would be 
desirable. This measurement can be performed in two ways. It can be per- 
formed through the steady state method of Watson now that the conductivity has  
been shown to be of the form K = AT3 -t- B. 
when this equation holds. Another way would be to use the differentiated line 
heater source method as described previously. A t  high temperatures, such as 
500°K,  the solid conduction component is negligible. A t  low temperatures, 
such as looo K, both ,the radiative and solid components are comparable; hence, 
from two measurements, one at high and one at low temperatures,  these constants 
could be determined. 

This method is only appropriate 

George C. Marshall Space Flight Center 
National Aeronautics and Space Administration 

Huntsville, Alabama, August 8, 1968 

908-20-02-00-62 
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APPENDIX A 

RELATIVE SIZES OF TERMS IN HEAT-TRANSFER EQUATIONS 

The equation that is being considered from the section METHOD OF 
MEASUREMENT expresses  the temperature change 

as a sum of two functions. 
compared to the first. 

The problem is to show the second one is small  

The absolute value of the second term is considered where 

which is l e s s  than o r  equal to v 1 where x z  0. I bmax a 

Physically this means that the maximum temperature of the heater wire 
during a test  t imes the ratio (b/a)  is always greater than the second te rm in 
equation ( A I ) .  The temperature change of the heater wire (v  ) can be found 

by considering the heater wire  as an isolated probe. Calculations show that 
the heater w i r e  exceeded the temperature of the thermocouple by a factor of 
20 o r  less. 
equation ( A I ) .  For  the particular geometry and construction used, b = 5 x 
inches and a = 2 x IO-’ inches so that the value of the inequality in equation 
(A2) becomes 

b 

The maximum temperature change is at the time t as used in 
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By noting equation ( A I )  the second te rm is obviously small  in comparison by 
a factor of 0 . 5  percent or  less. 
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APPENDIX B 

DATA L IST ING FOR CONDUCTIVITY CALCULATIONS 

Included in this appendix are all of the data needed to calculate the 
conductivity by method 1. The first column 
labeled RUN NO is the run number and the sample number. The first three- 
le t ter  number is the run number. The first digit of the second number is the 
sample number and the second digit, if there is one, refers to succeeding days. 
The column labeled TEMP is a listing of the temperature in degrees Kelvin. 
The next column is a listing of the time at which half of the maximum is reached 
on the chart  record. 
in the next column in decivolts. The other values are explained in  the text. 
The vacuum pressure  during all measurements was 2 x torr o r  better. 
The measurements are listed according to ascending temperature and not 
according to the run number o r  the chronological order  in which they w e r e  
taken. 

Each row is one measurement. 

The char t  reading in the range of zero to 100 is recorded 
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4 2 7  
4 0 3  
4 3 9  
41C 
4 1  1 
4 1 2  
4 1 3  
4 1 4  
4 1 6  
4 9 2  
4 Q 4  

7 
7 
7 
7 
7 
7 
7 
7 
7 
7 
7 

s1  
326 9.8 fli0 5 0.3 
3 2 5  5.7 67 .3  5 0 3  
351 1 3  e 4  6 8 . 0  5 c ' o  
377 Q . 7  35.0 1000 - . 4-e c)" . '5 396 9.8 

4 2 5  9.5 3 2 . 3  100c) 
4.1 6 F! a 4 6 1 0 -5-0 3- 
4 6  1 7a0 61.0 500 ~.. ~. - . - 5 ~ 3  
4P 1 7 .4  

1': SEC. S C A L E  RE. . ... - V O L T S  
1 r69 
1.69 
1.69 - 
le69 
'I 6 7  ----- 
l e 6 9  
1.69 
1.69 
1 e 6 9  

5 1 3  
5 1 3  

3.3 
3 . 6  

I ~ L A I Y P S  
1 2 - 0  2 
12.2 
1 2 a 2  
12.2 

-. 1-2-6-2 
12.2 
12a2 
12.2 
12.2 
J2.2 

-- 3 - i  2.- 

-L .-m- - 

13.68 
13.68 
13.68 
13.68 
13.68' 
13.68 
13.66 
13.68 
13.68 
13.68 
1 3 - 6 8  

c '4 
DEkS I TY- 
GiV / ClLi * * 3 

1.21 
1.21 
1.21 
1.21 

la21 
1.21 
la21 
1.21 

i-. 21 

. ... l a 2 1  
i ,Zi 



L I S T I ' V G  OF ?AW D A T A  

RUN NO 

418 8 
419 8 

4 2 1  9 
422 9 
423 8 
424 8 

370 6 
372 6 
375 6 
378 6 
3 0 3  5 
415 9 
381 6 
417 8 
382 6 
3 2 3  6 
403 8 
495 e 
384 6 
385 6 
362 6 
365 6 
336 5 

420 a 

436 a 

103 
126 
1 7 2  
204 
232 
24 8 
265 
305 
346 
363 
376 
354 
39 2 
4 2 2  
4 4 4 
449 
4 5 0  
469 
476 
4 7 6 
475 
4? 6 
4: 3 
4 !-? s 
4.;? 

E -  1%- 
CV 

11.63 
11.63 
11.63 
11.63 
11.63 
11.63 
11.63 
11.63 
11.52 
11.52 
11.52 
11.52 
11.52 
11.63  
11.52 
11.53 
11.52 
11.52 
l1.63 
11.63  
1 1 . 5 2  
1 1 . 5 2  
11.52 
11.52 
iL.52 

1 



LISTIYC OF RAW DATA 

3 2 5  2 3  3 0 2  
3 2 3  2 3  307  
3 0 6  2 2  3 0 4  
3 2 7  2 3  3 0 9  
3 2 9  23  3 2 3  
3 3 1  2 3  3 1 5  
3 1 2  2 2  3 3 6  
3 3 3  2 7  3 4 8  
3 1 7  2 7  3 7 0  
3 1 9  2 2  3 7 4  
3 2 1  2 2  3 Q 2  
2 9 1  2 1  4 0 2  
2 9 4  2 1  402  
3 0 0  2 1  4 0 2  
2 9 6  2 1  4 0 3  
2 9 8  2 1  4 0 3  
3 0 2  2 1  4 0 3  
3 3 6  3 5  2 1 5  
3 3 9  35  2 1 5  
337  3 5  2 2 2  
3 4 0  36  2 2 3  
3 4 1  36 228  
3 4 2  3 6 -  
3 4 3  36 270 
3 3 5  3 4  3 0 1  

1.49 
l o 4 9  

133.0 
-- 3-a-0 

5G0 500  1 0 4 6  12 .4  11.52 . 1.49 5 o o  50-o--- - - - -  - __ - _ _  - 
30.0 
26 ET- 1.46 1 2 0 4  ii .52 1.49 



LISTI'iG OF RA?! P A T A  

RUPl " !O 

324 33 
326 33 
307 32 
309 32 
322 33 
311 3 7  
330 33 
332 33 
313 32 
315 32 
316 32 
334 37 
318 32 
329 32 
322 3 7  
297 31 
299  31 
3 9 1  31 
333 31 

T E ' T  TI".':"E(1/2) ' r c y  -. - - - 5 T -5" v- '1 ;7 - - 

332 86.5 27.0 5CO 500 1.46 
30 2 94a?  25.5 509 5 0 0  1.46 
303 37.3 25.8 500 590 l a 4 6  
33 5 8 Q a 5  25.6 5C9 500 1.46 25..c! .._ __. - 5 - @ ~  

.. 5ii'8 315 93.0 l a 4 6  

I N  S E C a  S C A L E  R E a  s1 52 VSLTS 

327 93e0 25.6 ~ ~. 503 5 3 C  l a 4 6  

341 73a0 25.5 5c3 5cc  1.46 
342 65.5 30.5 50c  5GC! l a 4 6  
351 72.0 25.3 5G3 590 1 a46 
360 67aO 5 > c c  La46-- 
3 5 P  h 2 a 9  26.9 50c  5 c c  l a 4 6  
371 64a S 23.0 - 5co- 5 c o  l a 4 6  
177 69ac) 22.5 503 5120 l a 4 6  
38 5 52aC 22.3 5 2 2  5c ' j  l a 4 6  
49  1 56a2  21a5  53c 533  l a 4 6  

-1 i -4 6- 4 0 1  57.3 
4 0 1  57a0 2 1 a 0  50C 500 l a 4 6  
40 1 57.0 21.3 533 500 1.46 

33 1 73aG 24a5  503 - - - 5 O O  i . 4 6  
.. -~ 

- 'u9 5;"--. . 

2 1 3- - -. zj'L'7J 
-mc, .- . .- 

-1 - rh  
?\'I LA :v! P S 

12.4 
12.4 
1 2 a 4  
1 2 r 4  

1 2 a 4  
1 2 r 4  
1 2 a 4  

. 1 2 e 4  

12.4 
1 2 a 4  
1 2 a 4  
1 2 r 4  
1 2 a 4  
1'2.4 
1 2 a 4  
1 2 a 4  

i 2 . 4  

- i2.4 

'1 2 .: 4.- 

- .  

L 1 q .  

11.52 
11.52 
1 1 a 5 2  
11.52 
'1 1 a 5-2 
11.52 

11.52 
l l a 5 2  

. .~ 11.52 l- *. 5 

11.52 
11.52 
11.52 
11.52 
11.52 
I 1 5-2' 
11.52 
11.52 

C M 

11.52 

D E N S - I  TY-  
GM C K* * 3 

1a49 
1.49 
1.49 
1a49 
1e49 
1e49 
1a49 
1a49 
1a49 
1.49 
1.49 
1a49 
1049 
1 . 4 9  
1.49 
1a49 
l a 4 9  - 
1.49 
1a49 



Q, 
0 

L I S T I r i G  OF R A W  D A T A  

RLrm NO T E Y P  T I  ','E ( 1 / 2  1 EC'? 5 .$I TCHES 
I N  SEC. S C A L E  ? E a  s1 52 

389 5 133  96.8 30.0 5 C G  5 9 C  
390  5 104  96.6 SC.0  539 53c 
3 9 1  5 1 0 7  79.0 95.9 509 50: 
3 9 2  5 110 85.0 48.0 52c  l 0 C C  
3 9 3  5 1 1 5  79.0 50.0 5ca l O G O  
394  5 1 2 1  80.0 5180 500 1000 
395 5 1 3 1  67.0 51.0 500 1000 
396 5 1 4 1  62.0 5380  5CO 1 C d Q  
397 5 150 5 1  a3 53.0 5 ? 3  l0CC 

-v ' -1 
V C L T S  
1.70 
1.70 
l a 7 C  
1.70 
-1.70 
1.70 
l e 7 0  
1 .73  
1 7 3  

398  5 165  
399  5 1 7 7  
4 3 0  5 196  
4 0 1  5 208 
3 6 3  5 316 
364  5 323  
366 5 9 3 3  
36? 5 351 
360  5 365 
368  5 365 
354  5 385  
355  5 385  
3 5 3  5 387 
-369 5 388 
359 5 4 @ 1  
387 5 4136 

51.7 
40.C 
32.0 
31.2 
5h.3 
53.7 
44.2 
36.3. 
31.0 
29.0 
27.9 
27.9 
24.9 
2002 
24.4 
24.8 

5 2 . C  
5180  
74 .0  

74.3 
. 7T.8 - -  

7580  

3 8 8 0  
82.0 
76.0 
39.0  
38.0 
9 1  eo 

39.0 

- .  

4 3 8 3  

503 1000  
503 1000  
500 2 C C  
503  2 0 0  
500 230 

- 5-crg 
~ . . -  

13oc 2 c o  
.~.. 

- 2.c)c 
500  2 3 2  

'1005 205  

3 u 9  
1Q30  2 c o  

- l o o 0  - 2 - z c  

L 

.-5.cI 1 o c 3  . '-'2"- 23cl 

T m 
fLAZ4PPZ 

1 2 . 2  
12 .2  
12 .2  
1 2 . 2  
12 .2  
12 .2  
1 2 . 2  
1 2 . 2  
12.2 
12 .2  
1 2 . 2  
1 2 . 2  
1 2 . 2  
1 2 . 1  
1 2 . 1  
1 2 . 1  

1 2 . 1  
1 2 . 2  
1 2 . 1  
1 2 . 1  

- 12.1- 

1 2 . 1  _ _  
1 2 . 2  
1 2 . 1  
1 2 . 2  

L I '>.J 
C Y  

1 3 8 5 7  
1 3 8 5 7  
13 .57  
13857  
1 3 8 5 7  
13 .57  
13.57 

13.57 

13 .57  
13 .57  
13 .57  
13.57 
13.57 
13.57 

. - 1-3.;- 5 7 

13857  

13857  

1 3 8 5 7  
13.57 
13.57 
13.57 
13.57 
13.57 
13.57 

- - __ .. . .. - ... . 

i 3 .-'5 7 

D E N S I T Y  
G b' / C'4* * 3 

1 .49  
1e49 
1.49 
1 . 4 9  
1.49 
1a49 
1 b49 
1.49 
1a49 
1 .49  

1a49 
1a49 
1.49 
1a49 
1.49 

- - -rrrc9 - 
1.49 
1a49 
1.49 
1e49 

1 .-49 

- 1.49  
1t49 
1.49 
1.49 



- 

L I S T I ? d G  OF ?Ab.! D P T A  

R U N  "10 TF"P T1"F (1 / 2  i Fcu' 

371 5 416 15 m4 47°C) 
373 5 425 14.2 46.0 
358 5 429 1 9 e 2  38.0 
374 5 433 14e2 45.0 
376 5 442 1 2 e 8  49.0  

1'1 S E C e  SCALE Q E e  

3 5 6  5 444 15.0 42.0 
357 5 445 15.4 94.0 
3 e 8  5 4 4 9  11.9 65.0 
377 5 4 5 9  11.2 48.3 
352 5 468 12e0 49.0 
379 5 470 19.5 46 m-0 
351 5 4P1 Ile4 49.0 
350 5 435 l 0 e L  52.9 
348 5 455 l l e 4  93.3 
349 5 485 10.6 51.3 
350 5 495 1 9 e 4  52.C 

SW I T CH ES 
s1 s2 

1300 230 
1003 2 d C  
1oc3 220  
__.-. lOC2 2 2 c  
1900  23 6 
1 0 0 3  2.217 
500 205 

1302 290  
1093 200 
1900 2 2 9  
1 - 9 m  233 
1029 230 
1000 2CO 
530 20: 

1003  2cIc 
1003  2s:: 

v .  Th' 
V O L T S  
i.70 
le70 
1.79 
le70 
1-• 7 o 
1.70 
1.70 
l e 7 0  
1.79 
1.73 
re70  
le70 
1.73 
le7C 
1 m73 
le70 

r r y  L' I ': D E N S I T Y  
V L A M P S  C I\' Gp?/C,v**3 
12.2 13.57 1e49 
12.2 13.57 1 e49 
12.1 13.57 1.49 
12e2 13.57 1e49 
12.2 13.57 1.49 
12.1 13.57 1.49 
12e1 13.57 1 .49  
12.2 13.57 1e49 
1 2 e 2  13.57 1e49 
12.1 13.57 1049 
12.2 13.57 1.49' 
12.1 13.57 1049 
12.1 13.57 ' l e 4 9  
1 2 6 1  13.57 1e49 
12.1 13857 1e49 
1 2 e l  13.57 1.49 





APPENDIX C 

DATA LISTING OF VOLTAGE VERSUS TIME 

This appendix contains the data which are peculiar to method 2 where 
time versus  char t  readings are fitted to the theoretical equations giving the 
conductivity. 
give the time in seconds versus  char t  reading in centivolts. 

The first column gives the run number. The succeeding numbers 
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~ - 
LISTING OF KAk DATA O F  T I t t l t  VtAS CHART R E A D I N G /  

.- 

T l M E  f K  T I M E  E K  TIMk E K  T I M E  E R  T I M E  ER T I M E  ER 
.~ - . . - _ _  H U N  NU T I M E  ER 

__.._____-- __ 
35. 92. - 34 8 5 .  5 .  10. 37.  15. 66. 25. 91. 3 0 .  94. 2 0 .  8 3 .  

. - - ___ _. 
4 0 .  41. 45.  87. 50.  82 .  

2 ( r *  - _ _ _  
-351 5. 4. - ICJ; 19. 15. 3 5 .  43  . 25. 4 8 .  3 0 .  50. 35.  49. 

40. 48. 45. 4 4 .  
_____. -~ 

35. 49.  
._ 

3 5 2  5. 5 .  10. 18. 15. 3 3 .  20 .  4 2 .  25. 4 7 .  30. 49 .  ____ _ .  
40. -47. 4 5 .  44 .  



356 5. 12. lb. 
40. 39- 4 5 ;  

35. 33. -- 2U. 15. 27. 20. 3 3 .  25.  3 6 .  30. 37. 
40. 50. 43s 

~ _ .  .___ -__.- 

.- .. -~ . _ _  __ 
23 15. 41. 2 0 . 5 5  25. 65. 30. 73: 35. 73. 
d3 5 0 .  82 .  55. 80.  60. 79. 
_I_-_____ 

LLSTING U t  KAh D A T A  OF T I H E  V R S  CHART REAOING/ 

KUh NU - l l M E  El3 T l M E  t K  T I M E  E R  T I M E  k K  T I M E  Et4 T I M E -  EK T I M E  ER 

- - _ -  . 

- 

1G. 358 5. 0. 
40.' 35. 45. 
75. 35. 

5 .  0. 

- .  . 

3 60 15. 5. 3c. 

36 1 15. 2. 30 
- -1-To:- 70. 135. 

- - -  

362 15. 6. 30. 

363 15. 2. 3 b .  

15. 11. 2u. 20 .  25. 2 6 .  30. 30. 35. 33. - 3d. - ____. _____ 
3 7-. 57. 55,  3d. 6C. 36 ,  6 5 .  30 .  70, 37. 

5 .  

YO. 3d. 105. 36. - - - -- - - 75. 37. - . .- . - . 18. 4 5 .  28.  6 0 .  3 5 .  

_. - . 
31. 45. 4 7 .  6 0 .  53. 75. 54. 9 0 .  52. 

8 .  45. 25. 6 C .  4 3 .  75. 55. YO. 6 5 .  105. - - 6 8 7 .  
12G. 71. 1 3 3 .  72. 151). 74. 165. 7 2 .  180. 71. _ _ _  - . - -. . . . - . . . . . .- . - - ____ . - . . . ... . . . . . ._ . . 



-___ 
L I S T I N G  OF KAW DATA OF T I M E  V R S  CHART READING/ 

RUN NO T I M E  ER TIME ER T I M E  ER T I M E  ER TIME ER TIME E R  T I M E  ER 

____ . . - __... - ~- -. . -_.__ 

364 150 20 30. 13.  4 5 .  31. 6C. I__ 48. 750 61. ___- 90. 36. 105. 72. 
I z O . X - -  135 . 76.----nn. 14.  

.__ 

15. 7.  30. 3 1 .  4 5 .  54. 60. 70. 75. 77. 90. 79. 105. 78. 
- . ___- -lz(J-; 367 

_. 



LISTING OF RAW D A T A  OF T I M E  VRS CHART R E A D I N G /  

RUN NO T I M E  El7 TIME ER T I M E  ER T I M E  ER T I M E  ER T I M E  ER T I M E  ER 

.____ __ 

- . . _ _ _ ~  

373 5. 1. 10. 12. 15. 24. 20. 34. 25. 40. 30 .  43. 35. 45. 
400 46. 45. 47. 50.  46. 55 .  45. 60. 43. 6 5 .  42. 

.~ 374 , 5. 1. 10. 12. 15. 23. 20. 33. 25. 39. 30. 42. 35. 43. 
4 0;--47G 430 4 5 0  m-. 45. 

3 7 5  15. 0. 30. 3. 45. 12. 60. 26. 75. 37. 90. 45. 105. 49. 
1200 51. 135. 5 3 .  1 5 0 .  52. 

376 5. 3. 10. 16 .  15. 30. 20. 39. 25. 45. 30. 48. 35. 49. --______ _ _ _ _ - _ _ ~  
40. 48. 4 5 .  48. 5ao 47. 

3 i i  ~ 5. 4. 10.--20. 15. 30. 20. 43. 2 5 .  470 30. 4 8 .  35. 480 
40. 47. 45. 4 5 .  

- 378 - - 15. 2. .____- 30. 4. 45. 1 5 .  60. 28. 7 5 .  39. 90. . 4 7 .  .lo50 51. 
120. 52. 135. 52. 150. 53. 1650 52. 

-- - .____ __. ~- 
379 5. 6. 10. 21. 15. 3 6 .  20. 43. 25. 45.. 30. 46. 35. 45. 



L I S T I N G  OF RAW U A T A  OF T I M E  V X S  CHART R E A D I N G /  

T I M E  E R  ..._. ~ T I M t  .__ EK ---_____ T I M E  f R  T I M E  E K  T [ Y E  E R  T I M E .  F P  ~ - _ _ _ -  __. __ 
RUN NU T i M E  EK 

- 3 80 -. . 15. 2 .  30. 7 .  45.  2cj. 60. 3 4 .  75. 4 4 .  9c. 53. 195. 57. 
~ . ~ .  120. 135. 59. 

. .  

784 , 15. 4.  30.. 25 45. 4 3 .  60. 51. 75. 52. 90. 51. 

- _  - 
7 5 .  40 .  80. 3 9 .  8 5 .  3r3. - _  

35. 45.  
45.; 4 3 .  5c. 4 3 .  5s. 38. 37. 65. 34. .  - 70. 32. 

- -. -. - __ 3 8 8  . -40 5 .  .. 4.4.; 2. ~ . 10. 17. 15. 31. 20. . 39 .  6 ~ c  2 5 .  .... . 44.  .- . -~ 3 0 .  4 5 .  

75. 31.  8U. 30. 85. 2 d .  - .----____- -- . .. -. ____ _I________-_I 



. .- 

LISTING OF RAW D A T A  Of T I M E  V R S  C H A R T  R E A D I N G /  

RUN NU T I M E  ER T I M E  Ei? T I M E  ER T I M E  E R  T I M E  ER T I M E  ER T I M F l  E X  

_______ _ _ _  ~ . .... 

90. 35. 105. 44. 135. 60. 150.  65. 
. _ _ _ _ _ ~  30. 2. O C .  16. 

180. 120 210. 7 6 .  270 .  80. 300. 80.  
~- 3 89 150 1. ~ 



.- . -~ - LISTING OF R A M  DATA OF T I M E  V R S  CHART R E A D I N G /  

RUN NO T I M E  EK T I M E  EK T I M E  ER T I M k  EK T I M E  E R  T i M E  ER T I M E  E R  

_ _ _ _ _ ~  - - - -  

_. 

90. 5 1 .  1 0 5 .  51 .  - - . - - -_ - 09. 40. 7 5 .  4 7 .  
- .  - 

399 15. 2. 30. 15. 45. 33.  
--7zL--!mi--- - 

15. 5 .  K- n. - 7 5 .  52 7 

T 1 5 .  5 .  30. 24. 4 3 .- 40.--55c.-47.---75 .Tz: - '3G'.5L.L- 1 2 0 . 5 1 . 



LISTING OF RAW DATA OF T l M E  ~- V R S  C H A R T  R E A D I N G /  . . ~ 

T I M E  E R  T I M E  E R  RUN NO TIME ER , T I M E  ER T I M E  t K  T I M E  t R  T I M E  EK 

10. 3 6 .  15.  6 5 .  2 5 .  6 8 .  3 0 .  70. 3 5 .  71. 4 0 .  7 1 .  
-. _ _ _ _ _ . _ ~ ~ .  40 7 5. 6. 

4 5 .  69. 5 0 .  68. do,-- 54. 7C. 60. tic. 5 7 .  

410 5 .  I o  10. 21.  15 .  28. 2 0 .  3 3 .  2 5 .  37 .  3 0 .  3 7 .  3 5 .  3 4 .  
40. 35.  4 5 .  3 4 .  5 0 .  3 3 .  60. ~. 31.  8 0 .  - .___ 2 5 .  7 0 .  2 8 .  -_____ ____ 

41 1 5 0  8 -  10.  2 1 .  1 5 .  2 9 .  2 0 .  3 2 .  2 5 .  3 3 .  3 0 .  3 4 .  3 5 .  3 4 .  
5 0 .  28.  60 .  2 8 .  7 0 .  25. 8 0 .  22. 4 0 .  33.  4 5 .  3 2 .  50.  3 0 .  

90. 20. 

4 1 3  5 .  12. 10.  38. 15.  5 3 .  2 0 .  5 9 .  25. 62. 3 0 .  61. 3 5 .  5 8 .  
40. 5 5 .  4 5 .  5 1 .  56.  4 9 .  5 5 .  4 5 .  60. 4 3 .  70. 3 8 .  80. 3 5 .  



.- - -. __ - - . . -. . .. LISTING OF RAW D A T A  OF T I M E  VRS CHART R E A D I N G /  

RUN NO T I M E  ER T I M E  ER T I M E  EK T I M E  E K  T I M E  EK T I M E  ER T I M E  E K  

~ .- . . . - . . . . -. - . . - - -. ~~~ -. . . 

-4LU bU. 0 .  1LO.  4 .  7-80. 18. L40. 2 Y .  300. 340 360 



LISTING O f  RAW D A T A  OF T I M E  V R S  C H A R T  READING/ - 

RUN NO T I M E  kR T I M E  ER T I M E  ER T I M E  ER T IME ER T I M E  ER T I M E  ER 

423 60. 0. 1 2 0 .  11. 180. 24 .  240. 3 0 .  300. 330 3 6 0 .  33.  

424 60. 0. 120. 10. 180. 2 3 .  240.  3 0 .  300. 340 360.  35. 4 2 0 .  3 4 .  

END-OF-DATA ENCOUNTEREO ON S Y S T E M  INPUT F I L E .  
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